Improved synthesis for the rodenticides, diphenacoum and brodifacoum

Pieter S. van H eerden, B arend C. B. B ezuidenhoudt and D aneel Ferreira*
Department of Chemistry, University of the Orange Free State, P O B ox 339, Bloemfontein, 9300 South A frica

An improved synthesis of the 3-[3-(p-substituted phenyl)-1,2,3,4-tetrahydro-1-napththyl]-4hydroxycoumarins, diphenacoum and brodifacoum, is described. The process is primarily based on the formation of one of the crucial bonds in the carbon backbone using organocopper methodology, and on the coupling of the 4-hydroxycoumarin moiety to the 3-biphenyl tetralin unit under strongly acidic conditions.

Introduction

The 3-[3-(p-substituted phenyl)-1,2,3,4-tetrahydro-1-naphthyl]4 -hydroxycoumarins, diphenacoum 1 and brodifacoum 2 , show outstanding activity against both Warfarin-sensitive and Warfarin-resistant rats, and are now used commercially as rodenticides. O wing to their anticoagulant properties these may also be used at extremely low concentrations in humans suffering from circulatory diseases. The total syntheses of these commercially important anticoagulants have been the topic of several reports over the last two decades. ${ }^{1-5}$ A lthough some progress has been made to overcome the detrimental effect of stilbene formation in the Shadbolt and Woodward synthesis, the overall yields of both compounds are still very low (10$20 \%$). ${ }^{5}$

Herein, we report on a new protocol for the synthesis of diphenacoum and brodifacoum from low-cost, commercially available starting materials and involving organocopper chemistry ${ }^{6,7}$ to form one of the crucial bonds in their carbon frameworks. This method represents an improvement of existing processes leading to a two-fold increase in overall yield with a decrease in the number of steps from 8 and/or 9 to 5 and 6 respectively for diphenacoum and brodifacoum.

Results and discussion

In order to establish an overall improvement of the existing syntheses of diphenacoum and brodifacoum, we have opted for the retrosynthetic sequence outlined in Scheme 1. Since 1,4M ichael additions can be accomplished in excellent yields via

Scheme 1
organocopper reagents, the butanoate esters 8 and 9 could either be synthesized through the organocopper-mediated 1,4addition of biphenyl 17 and bromobiphenyl 18 units to ester 19, or via transfer of a benzyl group 25 to α, β-enoates $\mathbf{6}$ and 7 . A cid-catalysed cyclization and subsequent condensation with 4-hydroxycoumarin 16 , would then give diphenacoum 1 and brodifacoum 2. Owing to the successful conjugate addition of aryl based organocuprates to $1,4-\mathrm{M}$ ichael acceptors, ${ }^{8,9}$ initial attempts to synthesize esters $\mathbf{8}$ and $\mathbf{9}$ were focused on the former approach. The unreported ethyl 4-phenylcrotonate 19 was prepared in good yield (81\%) and selectivity ($\mathrm{E}: \mathrm{Z} 7: 1$) by a standard Wittig reaction between (carbethoxy)triphenylphosphonium chloride and phenylacetaldehyde.

Conjugate addition of conventional Gilman reagents to α, β unsaturated esters has met with limited success due to competitive reaction at the carbonyl centre. H owever, Y amamoto's Lewis acid-activated reagent ${ }^{10}$ and Lipshutz's higher order cyanocuprate ${ }^{8}$ represent viable alternatives for inducing 1,4addition to enoates. In order to test the feasibility of our approach a variety of model conjugate addition reactions of cuprates $\left[\mathrm{Bu} \mathrm{Z}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}, \mathrm{BuCu}-\mathrm{BF}_{3}, \mathrm{Bu}_{2} \mathrm{CuLi}-\mathrm{BF}_{3}\right]$ to enoate 19 was evaluated. A nalysis of the ${ }^{1} H$ NM R spectra of the reaction mixtures indicated in each case the exclusive formation of polyene-like material with no evidence of the formation of any addition product. Formation of these polyenes of types 21 and 22 presumably resulted from 1,2 -addition followed by abstraction of the relatively acidic benzylic and homo-allylic protons in the adduct of type 20 by the cuprate (Scheme 2). A lthough

20

21

22
cuprate $=\mathrm{Bu}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Li}_{2}, \mathrm{BuCuBF}_{3}, \mathrm{Bu}_{2} \mathrm{CuLiBF}_{3}$

Scheme 2

contrary to the usual mode of action of organocopper reagents, literature precedent ${ }^{11}$ for cuprates acting as bases does exist.

These complications prompted recourse to the alternative approach which required the introduction of a benzyl group to the β-position of the biphenyl esters 6 and 7 . Our recent demonstration of the highly successful conjugate addition ${ }^{6,7}$ of the benzyl copper reagent, BnCu-TMEDA, to cinnamic esters, indicated that the corresponding additions of the biphenyl unsaturated esters $\mathbf{6}$ and $\mathbf{7}$ would proceed in an analogous fashion to give rise to butanoates 8 and 9 .

Initial attempts to synthesize the commercially unavailable carbaldehyde 5 via bromination [thallium(III) acetate- $\left.\mathrm{Br}_{2}\right]^{12}$ of biphenylcarbaldehyde 4 and formylation $[\mathrm{N}$-phenyl- N -methylformamide- $\left.\mathrm{POCl}_{3}\right]^{13}$ of bromobiphenyl were unsuccessful, presumably due to low reactivity of the substrates. Careful lithiation of dibromobiphenyl $\mathbf{3}$ at low temperature, followed by treatment of the intermediate anion with N, N-dimethylformamide (DMF) ${ }^{14}$ afforded 4'-bromobiphenylcarbaldehyde 5 (95\%) (Scheme 3). With both precursors 4 and 5 available, separate Wittig condensation with (carbethoxy)triphenylphosphonium chloride in DM F and sodium methoxide at room temperature, gave the biphenyl esters 6 and $\mathbf{7}$ in 92 and 87%
yields, respectively. Our organocopper methodology was then successfully applied to the synthesis of butanoates 8 and 9 by treating enoates 6 and 7 with the BnCu-TM EDA complex in the presence of TM SCI leading to good yields (81-84\%) and regioselectivities (only 1,4 -addition) in both cases. Transformation of butanoates $\mathbf{8}$ and 9 into the tetralones 10 and 11 was initially approached via the Kim -L ee protocol ${ }^{5}$ involving cyclization of the butanoic acid analogue of 9 with polyphosphoric acid in toluene. A lthough the desired conversions were achieved in both cases, these reactions were not sufficiently high yielding ($68-71 \%$) and alternative methods were investigated. The use of AlCl_{3} in dry toluene at $90^{\circ} \mathrm{C}$ effectively catalysed the F riedelCrafts type cyclization of butanoates 8 and 9 into thetetralones 10 and 11 in good yields (88 and 86%, respectively). Although this cyclization could give rise to either 3 -(p-substituted phenyl)-3,4-dihydronapthalen-1(2H)-ones, e.g. 10, or 6 -(p-substituted phenyl)-3-benzylindan-1-ones, it has been shown that sixmembered rings are formed in preference to five-membered rings. ${ }^{15}$ Such a formation of a six-membered ring was confirmed by the carbonyl stretching bands at ca. $1680 \mathrm{~cm}^{-1}$ in the IR spectra of tetralones 10 and 11 in contrast to the expected absorption for substituted indanones at ca. $1720 \mathrm{~cm}^{-1}$. ${ }^{16}$ Thus, we have efficiently synthesized the tetralone derivatives 10 and 11 which are the key intermediates in the synthesis of diphenacoum 1 and brodifacoum 2.

In the Shadbolt-Woodward synthesis, access to $\mathbf{1}$ and $\mathbf{2}$ is feasible by condensation of 4-hydroxycoumarin 16 and the corresponding 1 -bromotetralin derivatives 14 and 15 . Owing to steric hindrance, forcing conditions ($140^{\circ} \mathrm{C}$) were required to establish coupling. In our hands this procedure, however, led to preferential dehydrohalogenation of 14 and 15 , giving only poor yields ($\sim 20-30 \%$) of diphenacoum 1 and broadifacoum 2 (Scheme 4).

U pon reduction of tetralones $\mathbf{1 0}$ and $\mathbf{1 1}$ with either sodium boranuide or aluminium isopropoxide, Shadbolt and Woodward reported products with cis and trans relative stereochemistry respectively. ${ }^{1}$ Since a 1,3 -cis orientation would facilitate a possible $\mathrm{S}_{\mathrm{N}} 2$ coupling mechanism through minimization of the steric effect caused by the bulky biphenyl substituents, ketones 10 and 11 were thus treated with NaBH_{4} - $\mathrm{EtOH}-\mathrm{THF}$ yielding the corresponding cis benzyl alcohols $\mathbf{1 2}$ ($98 \%, 90 \%$ de) and 13 ($97 \%, 90 \%$ de). The relative stereochemistry of 12 and 13 was established by ${ }^{1}$ H N M R spectroscopy. Following previous suggestions, ${ }^{17,18}$ the observed NOE (2.69 and 2.48\%, respectively for 12 and 13) between $\mathrm{H}-1$ and $\mathrm{H}-3$ in both 1,2,3,4-tetrahydro-3-biphenyl-4-yl-1-naphthols for the first time confirmed the 1,3-cis relationship of the hydroxy and biphenyl groups. The alicyclic rings are held in half-chair conformations with both substituents occupying pseudo-equatorial orientations (Fig. 1). Owing to the bulkiness of the biphenyl substituents, the observed diastereoselectivity presumably resulted by attack of the sodium boranuide from the less hindered face of the carbonyl functionality.

Subsequent in situ bromination (PBr_{3}) of alcohols 12 and 13 afforded tetrahydronapththyl halides 14 and 15 in good yields. In principle, deprotonation of 4 -hydroxycoumarin 16 followed by addition of the corresponding bromotetralin electrophile, e.g. 14, should lead to the target α-alkylated products 1 and 2. These base-catalysed couplings would require lower temperatures, hence inhibiting dehydrotetralin formation and leading to increased yields. However, even the mild deprotonation (lutidine-THF or $\mathrm{K}_{2} \mathrm{CO}_{3}$-acetone) of coumarin 16 at room temperature and subsequent treatment with either 14 or 15, resulted in the preferential formation of the unwanted products of dehydrohalogenation. Such a propensity of the bromotetralins to dehydrohalogenation under basic conditions prompted investigation of alternative acid-catalysed couplings. The following variation of the Shadbolt-Woodward procedure was found to be superior in terms of product yield and reproducibility of the reaction. Separate treatment of a

Scheme 3 Reagents and conditions: i, BuLi, THF, $-78^{\circ} \mathrm{C}$, then DM F, $-78 \rightarrow 0^{\circ} \mathrm{C}$; ii, $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{EtCl}{ }^{-}, \mathrm{NaOM}$ e, DM F; iii, $\mathrm{PhCH} 2 \mathrm{Cu}-\mathrm{TM}$ EDA, TM SCI, THF, $-78 \rightarrow-30^{\circ} \mathrm{C}$; iv, AICl_{3}, toluene, $90^{\circ} \mathrm{C}$; v, $\mathrm{NaBH}_{4}, \mathrm{EtOH}-\mathrm{THF}, \mathrm{RT}$; vi, $\mathrm{NaBH} 4, \mathrm{EtOH}-\mathrm{THF}, \mathrm{RT}$, then $\mathrm{PBr} r_{3}, \mathrm{DCM}, 0^{\circ} \mathrm{C}$; vii, 4-hydroxycoumarin, $\mathrm{HCl}(\mathrm{g}), 160^{\circ} \mathrm{C}$
mixture of 14 or 15 and 16 under an HCl atmosphere at $160^{\circ} \mathrm{C}$ for 30 min gave approximately equal quantities of the cis and trans isomers $\left[R_{F} 0.13\right.$ and 0.26 on silica in hexane-benzene-acetone ($6: 3: 1$)] of anticoagulants 1 (80%) and 2 (77%), together with minor quantities of the elimination artefacts 23 and 24. Owing to the success of this condensation, it was expected that coupling between 4 -hydroxycoumarin 16 and alcohols $\mathbf{1 2}$ and $\mathbf{1 3}$ would also be feasible under strongly acidic conditions at elevated temperatures. Such an approach would reduce the number of steps and result in an economically more favourable process. Thus by analogy, condensation of $\mathbf{1 6}$ and alcohols $\mathbf{1 2}$ and $\mathbf{1 3}$ provided a trans/cis mixture of tetrahydronaphthylcoumarins $\mathbf{1}$ (trans:cis 3:2) and 2 (trans:cis $5: 4$) in 78 and 74% yields, respectively (Scheme 3). The relative stereochemistry of the trans/cis isomers of diphenacoum $\mathbf{1}$ and brodifacoum $\mathbf{2}$ was again assigned by a series of NOE experiments (Scheme 5). Irradiation of the C-1 benzylic protons in the corresponding cis-isomers caused a substantial NOE enhancement (2.13 and 2.30%, respectively) of the C-3 benzylic signals at $\delta 3.04$. Similar NOE enhancement was con-
spicuously absent when $\mathrm{H}-1$ of the corresponding trans-isomers was irradiated
The coupling reaction presumably occurs according to the sequence outlined in Scheme 5 . Since an almost $1: 1$ ratio of diastereoisomeric compounds $\mathbf{1}$ and $\mathbf{2}$ was obtained, it appears that initial dehydration is followed by random $\mathrm{S}_{\mathrm{N}} 1$-attack on carbocation 26 by 4 -hydroxycoumarin 16. In addition, the coupling is driven to completion by the reversible regeneration of carbocation 26 from the elimination by-products 23 and 24. The slight selectivity may be attributed to the steric effect caused by the biphenyl unit, leading to predominant formation of the trans-isomers (Scheme 5).

We have thus developed a viable total synthesis of the anticoagulants diphenacoum $\mathbf{1}$ and brodifacoum 2 with a marked increase in overall yield to 54 and 43% compared to those of existing processes. Besides limiting the number of steps to five and six this protocol also has the potential to address the stereoselective synthesis of these compounds, a process which is currently being pursued and will be the subject of an impending publication.

$14 \mathrm{R}=\mathrm{H}$
$15 \mathrm{R}=\mathrm{Br}$

$23 \mathrm{R}=\mathrm{H}$
$24 \mathrm{R}=\mathrm{Br}$
Scheme 4

（土）－12 \quad＝$=\mathrm{H}$
（土） $\mathbf{- 1 3} \mathrm{R}=\mathrm{Br}$

Fig． 1

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded at ambient temperatures on a Bruker AM－300 spectrometer for solutions in CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$ ． IR spectra were recorded on a Unicam SP 100 spectro－ photometer，using 0.1 cm sodium chloride solution cells．High and low resolution mass spectra were obtained on a K ratos M S－80 mass spectrometer．M elting points were measured on a Reichert hot－stage apparatus and are uncorrected．Flash col－ umn chromatography was on M erck K ieselgel 60 （230－400 mesh）under a positive pressure by means of compressed nitro－ gen．Thin layer chromatography（TLC）was carried out on M erck K ieselgel $60 F_{254}$ plates with visualization by UV light and／or formaldehyde－sulfuric acid spray．Reagents and solv－ ents were purified by standard procedures．${ }^{19}$ Cul was freshly prepared ${ }^{20}$ and purified ${ }^{21}$ under an argon atmosphere．A Il other chemicals were used as purchased．Experiments were per－ formed under anhydrous conditions in an Ar atmosphere， unless specified to the contrary，using oven－dried apparatus and employing standard techniques for handling air－sensitive materials．Ether refers to diethyl ether．

（ \pm ）－12 \quad＝$=\mathrm{H}$ （土） $\mathbf{- 1 3} \mathrm{R}=\mathrm{Br}$

cis－isomer
trans－isomer

（ \pm ）$-1 \quad \mathrm{R}=\mathrm{H}, 78 \%$ ，trans：cis 3：2

（ \pm ）$-2 \quad \mathbf{R}=\mathrm{Br}, 74 \%$ ，trans：cis 5：4

Scheme 5

4＇－B romobiphenyl－4－carbaldehyde 5

To a solution of 4，4＇－dibromobiphenyl $\mathbf{3}(2 \mathrm{~g}, 6.41 \mathrm{mmol})$ in dry TH F（ 20 ml ）under argon at $-78^{\circ} \mathrm{C}$ butyllithium（ 1.63 m solu－ tion in hexanes； 3.93 ml ， 6.41 mmol ， 1 equiv．）was added drop－ wise with stirring．A fter 15 min D M F（ 20 ml ）was added to the mixture，the temperature of which was allowed to rise to room temperature，while stirring was continued for 2 h ．The mixture was diluted with water（ 50 ml ）and extracted with ether（ 3×50 $\mathrm{ml})$ ．The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evapor－ ated and flash chromatography（hexane－acetone 9：1）of the residue gave the carbaldehyde 5 as a white powder（ $1.6 \mathrm{~g}, 95 \%$ ）； $\mathrm{mp} 158^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.26$（hexane－acetone 9：1）；m／z 260 and 262 （ ${ }^{+}$， 77% ）， 262 （74）， 261 （55）， 259 （46）， 153 （16）， 152 （100）， 151 （23）， 150 （12）， 126 （10）， 76 （23）and 75 （12）（Found： M^{+}， 259.9838 and 261．9816． $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{OBr}$ requires $\mathrm{M}^{+}, 259.9837$ and 261．9817）；$v_{\max }\left(\right.$ liquid film）／cm ${ }^{-1} 1707(\mathrm{C}=0), 3022,1428$ and $750 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 10.06(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} 0), 7.96(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{H}-2,6)$ ， 7.72 （ $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{H}-3,5$ ）， 7.62 （2 H，d，J 8．5，H－3＇， 5^{\prime} ）and 7.50 （ $2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{H}-2^{\prime}, 6^{\prime}$ ）．

（E）－E thyl 4＇－phenylcinnamate 6

A suspension of sodium methoxide（ $1.3 \mathrm{~g}, 23.85 \mathrm{mmol}, 2.3$ equiv．）in dry DMF（ 100 ml ）was added to （carboxyethyl）triphenylphosphonium chloride（ $4.6 \mathrm{~g}, 12.14$ mmol， 1.1 equiv．）［prepared by stirring triphenylphosphine （ $21.67 \mathrm{~g}, 82.6 \mathrm{mmol}$ ）and ethyl chloroacetate（ $10 \mathrm{~g}, 81.6 \mathrm{mmol}$ ） in dry benzene（ 50 ml ）at room temperature］and the mixture
was stirred at room temperature for 12 h . It was then treated with a solution of carbaldehyde $4(2 \mathrm{~g}, 10.99 \mathrm{mmol})$ in dry DMF (50 ml), added dropwise over a period of 1 h . Stirring was continued for 48 h , after which the mixture was diluted with water (150 ml) and extracted with ether ($3 \times 150 \mathrm{ml}$). The combined extracts were successively washed with water (50 $\mathrm{ml}), 0.1 \mathrm{~m}$ hydrochloric acid ($2 \times 100 \mathrm{ml}$), water (50 ml), dried $\left(\mathrm{N} \mathrm{a}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography (hexaneacetone, $9: 1$) of the residue gave the cinnamate 6 as a white solid ($2.6 \mathrm{~g}, 92 \%$); mp $89^{\circ} \mathrm{C}$ (lit., ${ }^{22} 87^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{F}} 0.34$ (hexaneacetone, $9: 1) ; \mathrm{m} / \mathrm{z} 252\left(\mathrm{M}^{+}, 100 \%\right), 224(10), 208$ (11), 207 (61), 182 (49), 181 (56), 180 (39), 179 (27), 178 (65), 165 (20), 154 (13), 153 (25), 152 (58) and 151 (20); $v_{\text {max }}\left(\right.$ liquid film) $/ \mathrm{cm}^{-1}$ $1713(\mathrm{C}=0), 2938,1314$ and $1035 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 15.5, H-3), 7.64-7.56 (6 H, m, Ph), 7.48-7.35 (3 H, m, Ph), $6.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5, \mathrm{H}-2), 4.28\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.35\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

(E)-E thyl $\mathbf{4}^{\prime}$-(4"-bromophenyl)cinnamate 7

The cinnamate 7 was prepared by treating a suspension of sodium methoxide ($3.2 \mathrm{~g}, 59.63 \mathrm{mmol}, 2.3$ equiv.) and (carboxyethyl)triphenylphosphonium chloride ($7.9 \mathrm{~g}, 21.1 \mathrm{mmol}, 1.1$ equiv.) in dry DM F (200 ml) with 4'-bromobiphenyl-4-carbaldehyde 5 ($5.0 \mathrm{~g}, 19.2 \mathrm{mmol}$) in dry DMF (200 ml) as was described for compound 6. Flash chromatography (hexaneacetone, $9: 1$) afforded the target molecule 7 as a white solid (5.5 $\mathrm{g}, 87 \%$); mp $79^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{F}} 0.54 ; \mathrm{m} / \mathrm{z} 330$ and $302\left(\mathrm{M}^{+}, 100 \%\right), 332$ (99), 304 (12), 302 (12), 287 (47), 286 (10), 285 (48), 260 (29), 259 (15), 258 (34), 206 (20), 179 (13), 178 (71), 177 (14), 176 (27), 152 (31), 151 (19), 89 (14), 88 (12) and 76 (21) (Found: M^{+}, 330.0254 and $332.0235 . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Br}$ requires $\mathrm{M}^{+}, 330.0255$ and 332.0233); $v_{\text {max }}\left(\right.$ liquid film)/ $\mathrm{cm}^{-1} 1713(\mathrm{C}=0), 3016,1524$ and 1245; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5, \mathrm{H}-3), 7.62-7.56(6 \mathrm{H}, \mathrm{m}$, Ph), $7.47\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 6.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5, \mathrm{H}-2), 4.28$ $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

E thyl 3-(biphenyl-4'-yl)-4-phenylbutanoate 8

A mixture of Cul ($8.4 \mathrm{~g}, 44.2 \mathrm{mmol}, 2$ equiv.) and dry THF (160 ml) in a round-bottom flask was sealed with a rubber septum, flushed with argon and dry TMEDA ($8 \mathrm{ml}, 48.6 \mathrm{mmol}, 2.2$ equiv.) was added. A fter the mixture had been stirred at room temperature for 10 min the flask was cooled to $-78^{\circ} \mathrm{C}$ and the benzyl Grignard reagent (1.17 m solution in THF ; $38 \mathrm{ml}, 44.2$ mmol, 2 equiv.) was added to it. The mixture was then stirred at $-78^{\circ} \mathrm{C}$ for 15 min after which a solution of chlorotrimethylsilane ($14.2 \mathrm{ml}, 110.5 \mathrm{mmol}, 5$ equiv.) and the enoate $6(5.6 \mathrm{~g}$, 22.1 mmol), in dry THF (110 ml), was injected into it via a syringe with continued stirring; during this operation the temperature of the mixture was allowed to rise to $-30^{\circ} \mathrm{C}$. A fter 24 h the cold reaction mixture was poured into a separatory funnel containing saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{4} \mathrm{OH}(3: 2 ; 100 \mathrm{ml})$ and extracted twice with ether (200 ml). The combined extracts were then washed with water (200 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. F lash chromatography (hexane-acetone, 9:1) of the residue gave butanoate 8 as a white solid (6.3 g , 84\%); mp $67{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{F}} 0.34$ (hexane-acetone, $9: 1$); m/z $344\left(\mathrm{M}^{+}\right.$, 27\%), 299 (8), 256 (9), 254 (18), 253 (84), 252 (11), 212 (16), 211 (100), 183 (11), 181 (28), 180 (34), 179 (18), 178 (20), 167 (18), 166 (11), 165 (17), 149 (15), 91 (17) and 88 (10) (Found; M^{+}, 344.1762. $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2}$ requires M^{+}, 344.1776); $v_{\text {max }}$ (liquid film)/ $\mathrm{cm}^{-1} 1731(\mathrm{C}=0), 2938,1491$ and 1146; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.59-7.04$ ($14 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $3.99\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.51-3.41(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3), 2.97$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and 7) and 2.91 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and 8) $\left(4-\mathrm{CH}_{2}\right), 2.7(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5$ and 6.5$)$ and $2.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5$ and 8) $\left(2-\mathrm{CH}_{2}\right)$ and $1.11\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

E thyl 3-(4"-bromobiphenyl-4'-yl)-4-phenylbutanoate 9

In a reaction similar to that for the preparation of the butanoate 8, the BnCu-TM EDA complex [prepared by dissolving Cul ($4.2 \mathrm{~g}, 21.72 \mathrm{mmol}, 2$ equiv.) in a mixture of THF (80
ml) and TMEDA ($4 \mathrm{ml}, 23.93 \mathrm{mmol}, 2.2$ equiv.) followed by addition of BnM gCl (1.17 m solution in THF ; $19 \mathrm{ml}, 21.75$ mmol, 2 equiv.) was allowed to react with ethyl 4-(4'bromophenyl)cinnamate $7(3.6 \mathrm{~g}, 10.88 \mathrm{mmol}$ in 55 ml of THF) in the presence of $\mathrm{TM} \mathrm{SCl}(54.38 \mathrm{mmol} ; 7.1 \mathrm{ml}, 5$ equiv.) to give the butanoate 9 as a white solid ($3.7 \mathrm{~g}, 81 \%$); mp $49^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.54$ (hexane-acetone, 9:1); m/z 422 and 424 ($\mathrm{M}^{+}, 10 \%$), 423 (10), 333 (70), 332 (68), 290 (98), 289 (100), 253 (40), 211 (42), 179 (70), 178 (85), 165 (35), 152 (32), 91 (73) and 65 (28) (Found: $\mathrm{M}^{+}, 422.0878$ and 424.0863. $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Br}$ requires $\mathrm{M}^{+}, 422.0881$ and 424.0862); $v_{\text {max }}$ (liquid film)/cm ${ }^{-1} 1728(\mathrm{C}=0), 1524,1248$ and 930; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.53\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right), 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.5, H-2", $6^{\prime \prime}$), 7.43 (2 H, d, J 8.5, H-3', 5'), 7.26-7.05 (7 H, m, Ph), $3.99\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.52-3.42(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.96$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and 7.5) and $2.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14$ and 8$)\left(4-\mathrm{CH}_{2}\right)$, 2.69 (1 H , dd, J 16 and 7) and 2.62 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16$ and 8.5) (2$\left.\mathrm{CH}_{2}\right)$ and $1.12\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

3-(B iphenyl-4'-yl)-1,2,3,4-tetrahydronaphthalen-1-one 10

A nhydrous AICl_{3} ($240 \mathrm{mg}, 1.79 \mathrm{mmol}, 3$ equiv.) was added to a solution of the butanoate $8(200 \mathrm{mg}, 0.581 \mathrm{mmol})$ in dry toluene (4 ml). The mixture was kept at $90^{\circ} \mathrm{C}$ for 16 h after which it was treated with 3 m hydrochloric acid (3 ml), concentrated by solvent removal under reduced pressure and extracted with ethyl acetate $(2 \times 20 \mathrm{ml})$. The combined extracts were washed with water (20 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness to yield the tetralone 10 as a white solid ($0.152 \mathrm{~g}, 88 \%$) following preparative TLC (hexane-acetone, 9:1); mp $95{ }^{\circ} \mathrm{C}$ (lit., ${ }^{1} 92-$ $\left.94^{\circ} \mathrm{C}\right) ; \mathrm{R}_{\mathrm{F}} 0.3 ; v_{\max }($ liquid film $) / \mathrm{cm}^{-1} 1683(\mathrm{C}=0), 2260,1386$ and 897; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8$ and $1.5, \mathrm{H}-8), 7.62-7.28$ ($12 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 3.57-3.46 (1 H, m, H-3), 3.31-3.18 (2 H, m, $\left.4-\mathrm{CH}_{2}\right), 3.02[1 \mathrm{H}$, ddd, J 14, 4 and $2, \mathrm{H}-2(\mathrm{eq})]$ and $2.87[1 \mathrm{H}$, dd, J 16.5 and 12.5, H-2(ax)].

3-(4"-B romobiphenyl-4'-yl)-1,2,3,4-tetrahydronaphthalen-1-one

 11Treatment of the butanoate $9(200 \mathrm{mg}, 0.4728 \mathrm{mmol})$ with AlCl_{3} (190 mg, $1.43 \mathrm{mmol}, 3$ equiv.) in dry toluene (4 ml) as described above, gave the tetralone 11 (153 mg, 86\%); mp $153^{\circ} \mathrm{C}$ (lit., ${ }^{1} 156-158{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{F}} 0.29$ (hexane-acetone, $9: 1$); $v_{\text {max }}$ (liquid film)/cm ${ }^{-1} 1689$ ($\left.\mathrm{C}=0\right), 1605,1488$ and 906; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8$ and $1.5, \mathrm{H}-8), 7.62-7.28(11 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 3.57-3.46(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 3.31-3.18\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2}\right)$, 3.02 [1 H, ddd, J 16.5, 4 and 2, H-2(eq)] and 2.86 [1 H, dd, J 16.5 and $12.5, \mathrm{H}-2(\mathrm{ax})$].

3-(B iphenyl-4'-yl)-1,2,3,4-tetrahydronaphthalen-1-ol (mixture of cis,trans isomers) 12

Sodium boranuide ($51 \mathrm{mg}, 1.342 \mathrm{mmol}, 4$ equiv.) was added to a solution of the ketone 10 ($100 \mathrm{mg}, 0.3355 \mathrm{mmol}$) in EtOH TH F (1:1 mixture; 5 ml). The mixture was stirred for 4 h after which the excess of boranuide was destroyed by the addition of acetone prior to removal of the solvents in vacuo and the addition of water (5 ml). The mixture was extracted with ether $(3 \times 10 \mathrm{ml})$ and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to yield a white solid (98 mg, 98\%); $R_{F} 0.37$ (hexane-benzene-acetone, 6:3:1); $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 7.67-7.08(13 \mathrm{H}$, m, Ph), 5.05-4.95 [1 H , m, H-1 (cis,trans)], 3.48-3.36 [1 H, m, H-3 (trans)], 3.2-2.9 [3 H, m, 2- CH_{2} (cis,trans), 4-CH (cis)], 2.57-2.49 [1 H, m, H-3 (cis)], 2.38-2.30 (1 H, m) and 2.19-2.09 $(1 \mathrm{H}, \mathrm{m})\left[4-\mathrm{CH}_{2}\right.$ (trans)], 2.04-1.91[1 H , m, 4-CH (cis)] and 2.01.8 (br s, OH).

3-(4"-B romobiphenyl-4'-yl)-1,2,3,4-tetrahydronaphthalen-1-ol (mixture of cis,trans isomers) 13

Similar treatment of the bromo ketone 11 ($100 \mathrm{mg}, 0.2652$ mmol) with sodium boranuide ($40 \mathrm{mg}, 1.061 \mathrm{mmol}, 4$ equiv.) in EtOH-THF ($1: 1 ; 5 \mathrm{ml}$) gave the product 13 as a white solid ($97 \mathrm{mg}, 97 \%$); $\mathrm{R}_{\mathrm{F}} 0.38$ (hexane-benzene-acetone, 6:3:1); $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 7.67-7.10(12 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.05-4.95[1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$
(cis, trans)], 3.48-3.36 [1 H, m, H-3 (trans)], 3.2-2.9 [3 H, m, 2-CH ${ }_{2}$ (cis,trans), 4-CH (cis)], 2.57-2.49 [1 H, m, H-3 (cis)], 2.38-2.30 ($1 \mathrm{H}, \mathrm{m}$) and 2.19-2.09 ($1 \mathrm{H}, \mathrm{m}$) [4-CH2 (trans)], 2.04-1.91[1 H , m, 4-CH (cis)] and 2.0-1.8 (br s, OH).

3-[3'-(B iphenyl-4'-yl)-1', $\mathbf{2}^{\prime}, 3^{\prime}, 4^{\prime}$-tetrahydro-1'-naphthyl]4-hydroxychromen-2-one 1 (diphenacoum)

A mixture of the 4-hydroxycoumarin 16 ($106 \mathrm{mg}, 0.6532 \mathrm{mmol}$, 2 equiv.) and the tetralol 12 ($98 \mathrm{mg}, 0.3266 \mathrm{mmol}$) under an $\mathrm{HCl}(\mathrm{g})$ atmosphere was heated at $160^{\circ} \mathrm{C}$ for 30 min . Flash chromatography (hexane-benzene-acetone, 6:3:1) of the mixture afforded the title compound 1 ($0.115 \mathrm{~g}, 78 \%$; trans:cis, $3: 2$); trans-isomer: $\mathrm{mp} 213^{\circ} \mathrm{C}$ (lit., ${ }^{1} 215-217^{\circ} \mathrm{C}$, mixture of isomers); $\mathrm{R}_{\mathrm{F}} 0.26$ (hexane-benzene-acetone, 6:3:1); $v_{\text {max }}$ (liquid film $) / \mathrm{cm}^{-1} 1698(\mathrm{C}=0), 3022,1425$ and $1035 ; \delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}{ }_{6}\right) 7.63$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8$ and 1.5, H-5), 7.52-7.48 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.4 ($2 \mathrm{H}, \mathrm{d}$, J 8, Ph), 7.26-6.72 (12 H , m, Ph), 6.17 (br s, OH), 4.84 ($1 \mathrm{H}, \mathrm{dd}$, J 6 and 2.5, H-1'), 3.10-2.99 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}$), 2.88-2.79 ($1 \mathrm{H}, \mathrm{m}$) and 2.68-2.58 ($1 \mathrm{H}, \mathrm{m}$) $\left(4^{\prime}-\mathrm{CH}_{2}\right), 2.53-2.45(1 \mathrm{H}, \mathrm{m})$ and 2.18-2.06 ($1 \mathrm{H}, \mathrm{m}$) ($2^{\prime}-\mathrm{CH}_{2}$); cis-isomer: $\mathrm{mp} 216^{\circ} \mathrm{C}$ (lit., ${ }^{1}$ $215-217^{\circ} \mathrm{C}$, mixture of isomers); $\mathrm{R}_{\mathrm{F}} 0.13$ (hexane-benzeneacetone, 6:3:1); $v_{\max }(l i q u i d ~ f i l m) / \mathrm{cm}^{-1} 1698$ ($\mathrm{C}=0$), 3022, 1425 and 1035; $\delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 7.72-7.62(\mathrm{br} \mathrm{s}, \mathrm{OH}), 7.54(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8$ and 1.5, H-5), $7.47(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{Ph}), 7.29-6.77$ ($13 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.02-4.92 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1^{\prime}$), 2.85-2.65 ($4 \mathrm{H}, \mathrm{br} \mathrm{s}$) and 2.4-2.3 (1 H, br s) ($\left.2^{\prime}-\mathrm{CH}_{2}, \mathrm{H}-3^{\prime}, 4^{\prime}-\mathrm{CH}_{2}\right)$

3-[3'-(4"'-Bromobiphenyl-4"-yl)-1', $\mathbf{2}^{\prime}, 3^{\prime}, 4^{\prime}$ 'tetrahydro-1'-naphthylf-4-hydroxychromen-2-one 2 (brodifacoum)

A condensation similar to that described above between the tetralol $\mathbf{1 3}$ ($100 \mathrm{mg}, 0.2638 \mathrm{mmol}$) and 4-hydroxycoumarin $\mathbf{1 6}$ ($86 \mathrm{mg}, 0.5276 \mathrm{mmol}, 2$ equiv.) at $160^{\circ} \mathrm{C}$ for 30 min gave the title compound 2 ($0.103 \mathrm{~g}, 74 \%$, trans:cis, $11: 9$); trans-isomer: $\mathrm{mp} 224^{\circ} \mathrm{C}$ (lit., ${ }^{1} 228-230^{\circ} \mathrm{C}$, mixture of isomers); $\mathrm{R}_{\mathrm{F}} 0.26$ (hexane-benzene-acetone, 6:3:1); $v_{\text {max }}(l i q u i d ~ f i l m) / \mathrm{cm}^{-1} 1695$ $(\mathrm{C}=0), 3016,1422$ and $1035 ; \delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D} \mathrm{D}_{6}\right) 7.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8$ and 1.5, H-5'), 7.49 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8$ and 1.5, Ph), 7.39 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$, Ph), 7.32 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{H}-\mathrm{S}^{\prime \prime \prime}, 5^{\prime \prime \prime}$), 7.26-6.70 ($11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 4.86$4.81\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1^{\prime}\right), 3.10-2.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 2.88-2.79(1 \mathrm{H}$ $\mathrm{m})$ and $2.68-2.58(1 \mathrm{H}, \mathrm{m})\left(4^{\prime}-\mathrm{CH}_{2}\right), 2.53-2.45(1 \mathrm{H}, \mathrm{m})$ and 2.18-2.06 ($1 \mathrm{H}, \mathrm{m}$) ($2^{\prime}-\mathrm{CH}_{2}$); cis-isomer: mp $227^{\circ} \mathrm{C}$ (lit., ${ }^{1} 228-$ $230^{\circ} \mathrm{C}$, mixture of isomers); $\mathrm{R}_{\mathrm{F}} 0.13$ (hexane-benzene-acetone 6:3:1); $v_{\text {max }}(l i q u i d ~ f i l m) / \mathrm{cm}^{-1} 1695$ ($\mathrm{C}=0$), 3016, 1422 and $1035 ; \delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 7.66-7.63(\mathrm{br} \mathrm{s}, \mathrm{OH}), 7.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8$ and 1.5 H-5'), 7.48 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8, Ph), 7.37-6.76(14 H, m, Ph), 5.02-4.92
($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1^{\prime}$), 2.85-2.65 ($4 \mathrm{H}, \mathrm{br}$ s) and 2.4-2.3(1 H, br s) (2'-CH2, $\mathrm{H}-3^{\prime}, 4^{\prime}-\mathrm{CH}_{2}$).

A cknowledgements

Financial support by the Foundation for Research Development, Pretoria and the 'Sentrale N avorsingsfonds' of this U niversity is gratefully acknowledged.

R eferences

1 R. S. Shadbolt and D. R. Woodward, J. Chem. Soc., Perkin Trans. 1, 1976, 1190.
2 M . R . T. H adler and R . S. Shadbolt, G. P., 2424806, 1975.
3 M . R . T. H adler and R . S. Shadbolt, U SP, 3957824, 1976. 4 M . R . T. H adler and R . S. Shadbolt, U SP, 4035505, 1977. 5 I. O. K im and S. G. Lee, U K P, 2210040, 1989.

